Electrophilic Chemistry of Tetraphosphacubane: Novel Monophosphonium Ions of Ethylation, Benzylation, Acylation, and Adamantylation, Di- and Triphosphonium Ions of Acylation/ Alkylation and Alkylation/Protonation, and Monoprotonation of Tetraoxo- and Tetrathioxotetraphosphacubane[†]

Kenneth K. Laali,*,[‡] Bernhard Geissler,[§] Manfred Regitz,*,[⊥] and John J. Houser⁴

Department of Chemistry, Kent State University, Kent, Ohio 44242, Fachbereich Chemie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663, Germany, and Department of Chemistry, University of Akron, Akron, Ohio 44325-3601

Received July 5, 1994[®]

Ethyl triflate and benzyl triflate (via $PhCH_2Cl/AgOTf$) react with the tetraphosphacubane 2a at room temperature to give the phosphonium salts 6 and 7. The P-adamantylated monocation 8 was obtained by the ambient temperature reaction of 2a with 1-Ad⁺SbCl₆⁻. P-Acylation of 2a with $MeCO^+SbCl_6^-$ gives 9, whereas the diphosphonium salt 11 is cleanly obtained by ambient temperature acylation of 6, adamantylation of 6 with 1-Ad⁺ is less selective, forming 13 in a mixture. Protonation of 6 with $FSO_3H\cdot SbF_5$ (1:1) (magic acid)/SO₂ gives a ca. 1:1 mixture of dication 14 and trication 15. The trication becomes more prominant with time or by an increase in temperature. Protonation of 5 similarly gives a mixture of 16 and 17, but the disappearance of 16 is very rapid. With HF/SbF_5 (1:1)/SO₂ClF only triphosphonium cation 17 is detected. Protonation of 6 with $FSO_3H \cdot SbF_5$ (1:1)/SO₂ leads to near exclusive formation of 14; only traces of 15 are detected. Tetraoxo- and tetrathioxotetraphosphacubanes 4a, 4b are only monoprotonated in Magic acid/SO₂ $(\rightarrow 18 \text{ and } 19)$. PM3 calculations on protonation of tetramethyltetraphosphacubane 21 as model are also reported.

Introduction

Thermal cyclooligomerization of tBuC=P is nonselective yielding a mixture containing 2a in low yield (~10%). Chemoselective synthesis of 2a and 2b was subsequently achieved using the tricyclic zirconium complex 3 by reaction with hexachloroethane (Figure 1), providing gram quantitites $(3a, b \rightarrow 2a, b)$ for further studies.^{1,2}

Photoelectron spectroscopy,³ ab initio calculations,³ and NMR spectroscopy⁴ support the notion that $nP \rightarrow \sigma P-C$ delocalization occurs in tetraphosphacubane, a chemical manifestation of which is decreased nucleophilicity/ basicity at phosophorus.^{3,5}

In our previous studies,⁶ mono- and diprotonation of 1 in superacid media was demonstrated. Some examples of monoalkylation and monoalkynylation were also provided.

The present study is an extensive survey of ambienttemperature reactions of onium ions and carbocation

[†] Novel Phosphonium Cations. 2. For part 1, see ref 6. Organophosphorus Compounds. 93. For part 92, see: Mo, X. B.; Birkel, M.; Regitz, M. Heteroatom Chem. 1994, 5, in press.

J., Keim, W. Eds.; 1992 and related references cited therein.

(3) Gleiter, R.; Pfeifer, K.-H.; Baudler, M.; Scholz, G.; Wettling, T.;
Regitz, M. Chem. Ber. 1990, 123, 757.
(4) Wettling, T.; Schneider, J.; Wagner, O.; Kreiter, C. G.; Regitz,
M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1013.
(5) Birkel, M.; Schulz, J.; Bergsträsser, V.; Regitz, M. Angew. Chem.,

Int. Ed. Engl. 1992, 31, 879.

(6) Laali, K. K.; Regitz, M.; Birkel, M.; Stang, P. J.; Crittell, C. M. J. Org. Chem. 1993, 58, 4105.

Figure 1. The tetraphosphacubane substrates.

salts with 2a,b (Figure 1), namely ethylation with EtOTf, benzylation with PhCH₂OTf, adamantylation with 1-Ad⁺- $SbCl_6^-$, and acylation with $MeCO^+$ $SbCl_6^-$. Further ambient P-acylation and P-adamantylation of the alkylation monocations (5 and 8) are shown with MeCO⁺ and 1-Ad⁺ as electrophiles, and the first examples of protonated tetraoxo- and tetrathioxotetraphosphacubane (4b, 4a) are provided.

We also demonstrate that despite decreased reactivity at phosphorus, further P-protonation of the P-ethylated and P-methylated tetraphosphacubane (5 and 6) to give di- (SO₂ solvent) and triphosphonium ions (SO₂ClF solvent) is possible with FSO_3H/SbF_5 (1:1). Multinuclear NMR data for the phosphonium cations are obtained, and the key features compared. We also discuss the protonation of tetramethyltetraphosphacubane 21 by PM3 (mono- through tetraprotonation).

Results and Discussion

(1) Ethylation, Benzylation, and Adamantylation (Scheme 1). Tetraphosphacubane 2a reacts smoothly

[‡] Kent State University.

[§] Visiting Postdoctoral Fellow from Kaiserslautern at KSU. [⊥] University of Kaiserslautern.

[&]quot;University of Akron.

^{*} Abstract published in Advance ACS Abstracts, December 15, 1994. (1) Regitz M. in Organic Synthesis via Organometallics, proceedings of the Fourth Symposium in Aachen, July 1992; Enders, D., Gais, H.

^{(2) (}a) Wettling, T.; Geissler, B.; Schneider, R.; Barth, S. Binger, P.; Regitz, M. Angew Chem., Int. Ed. Engl. **1992**, 31, 758. (b) Regitz, M. In Heteroatom Chemistry, Block, E., Ed.; VCH: New York, 1990; Chapter 17.

Scheme 1. Methylation, Ethylation, Benzylation, and Adamantylation of 2a and Acylation of 2b

with ethyl triflate (EtOTf) at rt to give after 3 days a ca. 90% yield of the monophosphonium salt **6** isolated as a yellow crystalline product. It shows two resonances in the ³¹P NMR at 215.8 (3P) and 143.4 ppm (P⁺) as pseudosinglets. Their positions compare closely with those of the methylated analog **5** (213.0 and 132.8 ppm). The two types of cage carbons appear as multiplets at 10.0 (C₁) and -25.6 ppm (C₂). Coupling of the P⁺-Et group to phosphorus is seen both in the ¹³C and ¹H NMR. Attempted P/P diethylation of **1** with EtOTf/BCl₃ (2 equiv) was unsuccessful.

Room-temperature reaction of **2a** with benzyl triflate (PhCH₂OTf) formed in situ via the reaction of PhCH₂Cl with AgOTf^{7a} gave the P-benzylated analog **7** for which two ³¹P resonances are observed at 219.3 (3P) and 132.6 ppm (1P), appearing as doublet and quartet, respectively, due to P–P coupling. Such cage P–P coupling is not observable with the P-ethylated and P-methylated salts. The diagnostic benzylic hydrogens appear at 4.88 ppm in the ¹H NMR spectrum as a doublet (²J_{PH} = 10 Hz). In the ¹³C NMR spectrum, the benzylic carbon is seen at 47.5 ppm with a ¹J_{CP} of 33.0 Hz. This value is twice as large as ¹J_{CP} in the P⁺-CH₂CH₃ group. Carbon resonances for the Ph group appear as doublets and the cage carbons as two multiplets at 13.1 and -25.7 ppm.

Monoadamantylation of 2a could be achieved by stirring the tetraphosphacubane with $1-Ad^+SbCl_6^-$ in CH_2 - Cl_2 solvent at rt for 3 days to give 8 as a yellow solid. Oxidation to the tetraphosphacubane monooxide is a side reaction (ca. 15% from ³¹P NMR). The two types of phosphorus resonances for 8 are at 198.1 (3P) and 86.4 ppm (1P), appearing as a doublet and a quartet, respectively, with ${}^{2}J_{PP} = 17.1$ Hz. This P-P coupling is considerably larger than that for 7. It appears that increasing steric crowding causes geometrical distortions in the cubic structure which in turn affects the P-Pcoupling. The 1-Ad-P⁺ phosphorous resonance (86.4 ppm) is substantially more upfield than those of the alkylated and benzylated analogs 5-7 (in the region where P^+-H resonances were observed for the mono- and diprotonated analogs).⁶ The bridgehead carbon is at 41.2 ppm with ${}^{1}J_{PC} = 41.5$ Hz. Comparison of the ${}^{1}J$ PC at P^+ for 6, 7, and 8 shows increasing coupling constants with increased steric crowding [14.4 (for 6), 33.0 (for 7), and 41.5 (for 8)]. There is little change in the positions of the C_1 cage carbons for 7 and 8.

(2) Acylation (Scheme 1). Under strictly anhydrous conditions, 2b is selectively monoacylated with MeCO⁺-SbCl₆⁻ in CH₂Cl₂ solvent at rt to give 9b (ca. 75% yield after 3 days stirring). The ³¹P NMR spectrum of 9b exhibits two resonances at 194.5 (3P) and 84.2 (1P), appearing as a doublet and a quartet, respectively (J = 18 Hz), due to P-P coupling. Both the position of P⁺-COMe phosphorus resonance and the magnitute of the P-P coupling for 9b are close to those observed for 8. The *Me*CO is a singlet at 2.13 ppm in the ¹H NMR spectrum; its CO group appears as a multiplet at 191.3 ppm in its ¹³C NMR spectrum (by coupling to two different cage P centers). The cage carbons give rise to two multiplets at -18.0 (C₂) and 9.0 ppm (C₁). Two types of *tert*-pentyl groups are seen (3:1 ratio) in the ¹³C NMR.

A similar reaction of 2a with MeCO⁺SbCl₆⁻ was less selective. The ³¹P NMR spectrum of the reaction mixture showed apart from 9a (70%), some tetraphosphacubane monooxide⁶ (20%) and minor amounts of P/P diacylated dication 10a (10%). The lattter exhibits two ³¹P resonances at 30.7 and -18.0 ppm (1:1), both as 5.3 Hz triplets $({}^{2}J_{PP})$. The extent of oxidation was variable in different runs: in one case, only minor amounts of 9a were formed and the tetraphosphacubane monooxide increased to ca. 40%. A significant portion of the reaction mixture was a P/P-difunctionalized tetraphosphacubane (60%), having two ^{31}P resonances at 30.7 and $-9.9\ ppm$ (1:1; both as triplets with ${}^{2}Jpp = 7.1$ Hz), assigned to the tetraphosphacubane bis(oxide). In an independent experiment we found that the latter can be obtained [³¹P NMR: 34.3 and -15.2 (1:1)] as a byproduct in the oxidation of 2a with bis(trimethylsilyl) peroxide (Me₃- Si_2O_2 (1 equiv).

Due to a lack of reproducibility, the acetyl cation salt/ methylene chloride approach is unsuitable for selective synthesis of the dioxotetraphosphacubane.

(3) Synthesis of Diphosphonium Salts 11-13 by Ambient-Temperature Acylation and Adamantylation of 5-6 (Scheme 2). The P-ethylated triflate salt 6 reacts cleanly with MeCO⁺SbCl₆⁻ in dry CH₂Cl₂ at rt to furnish the diphosphonium salt 11 as a yellow solid in quantitative yield after 4 days.

The ³¹P NMR spectrum of 11 exhibits three resonances at 85.6 (1P), 62.4 (2P), and 49.0 ppm (1P) as a doublet of triplet, a pseudotriplet, and a doublet of triplets, respectively. The assignment of pseudotriplet at 62.6 ppm to the remaining two cage P centers is unambiguous (${}^{2}J_{P^+P}$ = 9.9 Hz). For the two remaining 1P signals, assignment of the 85.6 ppm resonance to P⁺-Et and 49.0 ppm resonance to P⁺-COMe are based on comparison with 12

(see below). Analysis of these doublet of triplets shows that ${}^{2}J_{P^{+}-P^{+}}$ is twice as large compared to ${}^{2}J_{P^{+}-P}$ coupling (22.8 compared to 9.4 and 10.2 Hz respectively).

As expected, there are three cage-C multiplets [12.8 (C₃), 47.1 (C₂), and 69.4 (C₁)] and three tBu groups (2: 1:1 ratio) in the ¹³C NMR. The P⁺-COMe appears as a broad singlet at 182.3 ppm, which is slightly more upfield compared to the CO in **9**.

Dication salt 11 appears indefinitely stable when refrigerated; attempts are underway to obtain its X-ray crystal structure.

Surprisingly, P-acylation of 5, with $MeCO^+SbCl_6^-$ was sluggish, yielding a mixture of desired dication 12 (ca. 60%) and unreacted 5. The ³¹P resonances for 12 were at 61.7 (2P), 53.7 (1P), and 49.2 ppm (1P). The assignment of 49.2 ppm resonance to P⁺-COMe was thus assured (see above). Attempts to force the reaction to completion by adding excess $MeCO^+SbCl_6^-$ were unsuccessful.

Chemoselective P-adamantylation of **6** with 1-Ad⁺-SbCl₆⁻ could not be achieved. The desired diphosphonium cation **13** was obtained in ca. 35% yield in a mixture containing unreated **6** and several unidentified tetraphosphacubane derivatives. The ³¹P spectrum of **13** exhibited three resonances at 86.2 (1P), 61.9 (2P), and 49.0 ppm (1P). These are very close to the resonances for **11**, suggesting that P-adamantylation and P-acetylation effects on ³¹P shifts are nearly the same for the two dications. The ²J_{P-P} coupling patterns are also similar.

(4) Protonation of P-Alkylated Monocations 5 and 6 in Superacid Media (Scheme 3). In the context of our previous studies,⁶ we briefly mentioned the protonation of 5 in FSO₃H·SbF₅ (1:1)/SO₂ClF and in HF·SbF₅ (1: 1)/SO₂ClF leading to the novel trication 17. We have now studied 6 (and 5) in detail and find that the nature of the cosolvent (SO₂ClF versus SO₂) has an impact on protonation:

When a cold solution of $FSO_3H\cdot SbF_5$ (1:1) (Magic acid)/ SO₂ is added to a solution of **6** in SO₂ (dry ice/acetone temperature), the P/P ethylated/protonated dication **14** is formed, showing three phosphorus resonances at 170.2 (2P), 136.4 (P⁺-Et), and 81.2 (P⁺-H). The latter shows a ${}^{1}J_{P^+-H}$ of 467 Hz (with decoupler off). Both P⁺ centers appear as doublet of triplets with ${}^{2}J_{P^+-P^+} = 34.5$ and ${}^{2}J$ P⁺-P = 11.2 and 12.1 Hz. This trend is analogous to that for **11** and **13**. In the ${}^{13}C$ NMR there are three cage-C

Scheme 3. Low-Temperature Protonation of 6 and 5 in Superacid Media

carbons, the most downfield of which is a multiplet (C_1) at 39.9 ppm. The most upfield cage-C (C_3) appears as a doublet of doublet. As was the case with the mono- and diprotonated **2a** we previously studied,⁶ the P-H resonance is not observed in the ¹H NMR spectrum of **14**.

The same reaction in the less nucleophilic SO₂ClF gave apart from 14 a new phosphonium ion with three (more upfield) phosphorus resonances at 117.0 (2P), 114.8 (1P), and 79.5 ppm (1P) (spectra recorded at -80 °C). The 117.0 ppm 2P resonance appears as a doublet of doublets (29.7 and 13.4 Hz) and remains unchanged when the decoupler is off. The 114.8 ppm 1P resonance appears as a doublet of triplets (29.6 and 13.2 Hz) and collapses into a broad hump when the decoupler is off. The 79.5 ppm 1P resonance appears as a pseudoquartet (30.0 Hz) and remains unchanged when the decoupler is turned off. On this basis the 79.5 ppm resonance is assigned to P⁺-Et and the 114.8 ppm resonance to P⁺-H.

The ¹³C NMR spectrum of the mixture gives apart from the expected resonances for 14 (discussed earlier), three new, more deshielded, cage-C carbons at 61.9, 37.9, and 17.4 ppm (2:1:1 ratio; multiplets), a distinctly more deshielded P⁺-Et(Me) doublet at 8.35 ppm (${}^{2}J_{CP} = 6.8$ Hz), and additional tBu resonances. The observed trend of more shielded phosphorus and more deshielded cagecarbon environments suggests a trication structure for the second ion. On the basis of the chemical shift arguments, a P/P-diprotonated/P-ethylated cation is inconsistent with the data, whereas a structure like 15 fullfils all the requirements. Thus formation of a 4e/3C bond at two phosphorus centers is tentatively suggested.^{7b} Lack of change in the doublet of doublets appearance of this resonance on H-decoupling suggests a rather weak P-H-P interaction. There is no exchange broadening in the phosphorus spectra to suggest an average structure by rapid proton exchange. Collapse of the doublet of triplet resonance for P⁺-H center on H-decoupling rather than splitting into a doublet (as was observed with 14) suggests that the P^+-H bond state is different from that in 14. Prolonged storage of the sample at dry ice/ acetone temperature led to a slow decrease of 14 and

^{(7) (}a) Booth, B. L.; Haszeldine, R. M.; Laali, K. J. Chem. Soc., Perkin. Trans. 1 1980, 2887. (b) Whereas crude molecular models of tetraphosphacubane skeleton suggest that the presumed relative orientation of phosphorus lone pairs should be unsuitable for $P^{d+}-H^{-}P^{d+}$ 4e/3C bond formation, the $nP \rightarrow \sigma$ PC delocalization process may influence this picture. In any case, our experimental data do not appear compatible with "averaging" due to rapid exchange (we thank one of the reviewers for insightful comments on this issue). (c) The 116.7 ppm value in ref 6 is an unnoticed printing error.

Scheme 4. Low-Temperature Protonation of 4a and 4b in Magic Acid/SO₂

increase in 15. The observed changes corroborated the relative assignments of the phosphorus resonances. Likewise, changes observed in the relative intensities of the ¹³C resonances corroborated the assignments made for 15. Increased concentration of 15 increased the viscosity of the sample. Samples reaching 80-90% of 15 rapidly polymerized in the probe, forming a gel. Therefore a ¹³C NMR spectrum of pure 15 could not be obtained.

Protonation of **5** with $FSO_3H\cdot SbF_5$ (1:1)/SO₂ClF gave a mixture of **16** and **17**, but the disappearance of **16** was much more rapid (compared to **16**). In HF·SbF₅ (1:1)/ SO₂ClF only **17** was observed, which subsequently polymerized. The trication **17** exhibited three phosphorus resonances at 117.2 (2P), 106.7^{7c} (1P), and 80.3 (1P). The latter appeared as a distorted 33 Hz pseudoquartet. Other resonances appeared as pseudosinglets. The ¹³C NMR spectrum of **17** shows the P⁺-Me as a distinct doublet at 21.4 ppm. The cage carbon positions at 60.6, 38.1, and 16.0 (2:1:1; all multiplets) are in close agreement to those assigned to **15**.

(5) Protonation of the Tetraphosphacubane Tetraoxide (4b) and Tetrasulfide (4a) (Scheme 4). Regitz et al. have shown⁸ that P-oxidation in 2a or 2b to give 4a (with sulfur/Et₃N) or 4b (with 4 equiv of $(Me_3Si)_2O_2$) brings about a dramatic change in the P-C bonding situation.⁸ Thus the unusually deshielded phosphorus resonances and extremely shielded cage-carbon resonances observed in 2a,b^{2,4} change to normal values for phosphine oxides (or sulfides). In this regard it was of interest to examine the protonation of 4a,b for comparison with our previous studies with 2a.

Surprisingly, tetraphosphacubane tetraoxide **4b** is not fully protonated in FSO₃H/SO₂ at -60 °C. The resulting clear yellow solution exhibited a single resonance in the ³¹P NMR spectrum deshielded by just 7 ppm relative to **4b**.

The O-protonation could only be effected with FSO₃H/SbF₅ (1:1)/SO₂ to give **18**. The reaction takes place immediately at dry ice/acetone temperature, forming a clear yellow solution. The resulting monocation exhibits two ³¹P resonances at 26.4 (3P) and -33.7 ppm (1P), appearing as a doublet and a quartet, respectively, with ${}^{2}J_{P,P} = 91.3$ Hz. Two cage carbons are seen as multiplets at 120.7 (C₂) and 59.9 ppm (C₁). The cage-C in **4b** is a multiplet at 111.2 ppm.

The two-bond P-P coupling in 18 is significantly larger than those observed for phosphonium cations of 2a and 2b. The *tert*-pentyl groups appear broad in the ¹H NMR spectrum, and a separate POH⁺ resonance is not seen.

Protonation of 4a was remarkably slow in FSO₃H/SbF₅ (1:1)/SO₂ solvent and required raising of temperature to ca. -40 °C for the substrate to dissolve in the superacid. Its ³¹P NMR spectrum exhibits two major resonances at 63.2 (3P) and -38.4 (1P) both as pseudosinglets and two minor absorptions at 68.2 and -33.0 ppm (1:1) accounting for ca. 10% of the reaction mixture. No unreacted 4a remains (³¹P absorption of 4a itself is at 19.0 ppm). The major product is assigned to 19, and the minor one to the diprotonated analog 20. The PSH⁺ resonance was detectable as a broad peak in the ¹H NMR centered at 5.6 ppm. The cage-C resonances are at 88.4 (C₂) and 47.7 (C₁) ppm. The latter is *shielded* by 47 ppm relative to the precursor. The tBu groups appear broad in the ¹³C spectrum.

(6) Theoretical Studies of Protonation. The X-ray crystal structure of **2a** has been determined by Regitz et. al.,⁴ confirming its distorted cubic geometry. The average P-C bond length is 1.881 Å; the P-C-P, C-P-C, and P-C-C angles are 94.4°, 85.6°, and 122.2°. Bachrach and Perriott⁹ carried out an ab initio study on unsubstituted tetraphosphacubane at the HF/6-31G* level and obtained a geometry which agreed very closely with the X-ray structure of the tetra-tert-butyl-substituted species. Their calculated C-P bond length and P-C-P and C-P-C bond angles were 1.885 Å and 94.97° and 84.81°, respectively. They attribute the calculated 100 kcal/mol decrease in ring strain energy compared to cubane to the ability of phosphorus to accommodate small angles, allowing the angles about carbon to exceed 90°, and to a significant ionic character of the C-P bond.9

We have used PM3 to study the unsubstituted tetraphosphacubane and find a $\Delta H_{\rm f}^{\circ}$ of 65.8 kcal/mol, making it the most stable among the possible C₄H₄P₄ isomers. The PM3 geometry is likewise in close agreement with the aforementioned X-ray structure, with an average C-P bond length of 1.896 Å and P-C-P and C-P-C angles of 94.9° and 85.0°, respectively. PM3 likewise predicts a very polar C-P bond ($Q_{\rm P} = +0.51$; $Q_{\rm C} = -0.68$).

We carried out PM3 calculations on tetramethyltetraphosphacubane **21** and its mono-, di-, tri-, and tetraprotonated forms as models for the corresponding tetra-*tert*butyl systems (Table 1 and supplementary material). We

find that in the phosphonium ions, the $\mathrm{C}\mathrm{-}\mathrm{P}^{\mathrm{+}}$ bonds are

⁽⁸⁾ Birkel, M.; Schulz, J.; Bergsträsser, U.; Regitz, M. Angew Chem., Int. Ed. Engl. **1992**, 31, 879.

⁽⁹⁾ Bachrach, S. M.; Perriott, L. M. Tetrahedron Lett. 1993, 34, 6365.

			Selected Charges			
substrate	$\Delta H_{\rm f}^{\circ} ({\rm KCal/mol})$	$\Delta\Delta H_{ m f}^{\circ}$	P +	Р	$C-(P^+)_n$	$C-(P)_n$
21 P-protonated 21	67.22 212.57	145.35	+1.854	+0.517 +0.791	-0.95	-0.613 -0.745 n = 3
P,P-diprotonated 21	438.58	371.36	+2.042	+1.041	n = 1 -1.213 n = 2	n = 3 -1.056 n = 2
P,P,P-triprotonated 21	747.66	680.44	+2.202	+1.266	-1.39 n = 3	-1.289 n = 1
P,P,P,P-tetraprotonated 21	1142.94	1075.72	+2.338		-1.448	

shorter and the C-P bonds (with one exception) are longer than the C-P bonds in the unprotonated **21** or in **2a**. Note that in several cases there are two groups of bonds of the same type, $C-P^+$ or C-P (see the supplementary material for more detailed assignments). In all cases the highly polarized nature of the cage C-P bond is evident. The amount of C-P charge separation increases with progressive protonation, and the negative charge on carbon increases even for those carbons not directly bonded to a protonated phosphorus.

A Comparison of the Shielding/Deshielding Trends for the Cage C-P in the Studied Cations. In accord with our previous observations with the monoand diprotonated 2a and monoalkylated (monoalkynylated) 2a,⁶ the monophosphonium ions of ethylation (6), benzylation (7), adamantylation (8), and acylation (9) show that the phosphorus resonances move upfield and cage-carbon resonances move downfield from their original extreme positions in 2a. The magnitudes of these shifts are the greatest for the C-P⁺ bonds. These shifts are opposite to the calculated charge densities (see Table 1).

The ethylation/acylation dication 11 provides an extreme example of shielding at phosphorus and deshielding at cage carbons.

A rather different situation is seen in 18 and 19, for which both the protonated PO and the attached cage- C_1 carbons are strongly shielded relative to the precursors, instead the remaining phosphorus centers and cage- C_2 are deshieled.

Experimental Section

Chemoselective synthesis of **2a,b** was according to Regitz et al.^{2a} Synthesis of **5** was previously reported by us.⁶ The tetraoxo and tetrathioxo derivatives were prepared by oxidation of **2a** (or **2b**) with (TMS)₂O₂ and with S₈/Et₃N, respectively, according to Regitz et al.⁵

Methyl and ethyl triflate (both Aldrich) were distilled prior to use.

Benzyl triflate was prepared in situ from AgOTf (Aldrich) and benzyl chloride at rt according to ref 7a.

 FSO_3H (Allied) and SbF_5 (Aldrich) were distilled in an allglass distillation unit under dry nitrogen. SO_2ClF (Aldrich) and anhydrous SO_2 (Linde) were used as received.

Preparation of FSO_3H/SbF_5 (1:1) and HF/SbF_5 (1:1) were according to the general procedures previously reported.⁶

For the synthesis of $1-Ad^+SbCl_6^-$ and $MeCO^+SbCl_6^-$ salts, the procedures of Olah et al.^{10,11} were modified as follows:

Adamantyl chloride (0.684 g, 4.0 mmol) was dissolved in dry CH_2Cl_2 (ca. 50 ml). The solution was cooled to dry ice/acetone temperature, and $SbCl_5$ (0.51 mL, 1 equiv) was added under a dry nitrogen atmosphere. The temperature was brought to rt, and after 1 h the solution was cooled again (dry ice/acetone bath) to crystallize $1-Ad^+SbCl_6^-$ out of solution. The liquid was removed with a pipet and the white solid dried under

(10) Olah, G. A.; Svoboda, J. J.; Ku, A. T. Synthesis 1973, 492.
(11) Olah, G. A.; Lin, H. C.; Germain, A. Synthesis 1974, 895.

vaccum (yield ca. 80%). For $MeCO^+SbCl_6^-$ preparation, the procedure was similar except that the Lewis acid was added at O °C. The salt precipitated from methylene chloride as a white solid. It was filtered under nitrogen, washed with a small amount of CH_2Cl_2 , and dried under vaccum.

The NMR spectra were all recorded on a GE-GN300 instrument. A 10 mm broad-band probe was used for the phosphorus spectra, whereas a 5 mm C/H switchable probe was used for carbon and proton data. The procedures for the low-temperature NMR work were analogous to our previous work.⁶

PM3 calculations were carried out using MOPAC 7 running under OS/2. We are grateful to Dr. Henry A. Kushka of The University of Akron (retired) for providing this program.

General Procedure for the Room-Temperature Synthesis of Phosphonium Salts 6–9 and 11–13. The experiments were carried out on 80-100 mg scale in Schlenk pressure tubes under argon (or dry nitrogen). The tetraphosphacubane substrate was dissolved in rigorously dried methylene chloride, the triflate or the cation salt (usually 1.1 molar equiv) was added directly under argon with efficient stirring at rt, and the Schlenk tube was sealed. After 2–3 days the solvent was removed under vaccum, and the residue (usually yellow) was washed with hexane and dissolved in CDCl₃ for NMR studies. 2a and 2b are nicely soluble in hexane and give yellow solutions even at very high dilution. The hexane wash from the reactions was found to be colorless in almost all cases, showing that no unreacted tetraphosphacubane remained.

For synthesis of 7, after dissolving 2a in methylene chloride, AgOTf was added under argon followed by benzyl chloride (1 equiv each) whereupon AgCl was quickly formed and increased with time. The reaction was complete (³¹P NMR) after overnight stirring at rt.

General Procedure for Stable Ion Generation. Typically, 100 mg of the substrate was placed inside a 10 mm NMR tube cooled to dry ice/acetone temperature diluted with SO_2 (or SO_2ClF) under argon.

The NMR tube was capped and was fully immersed into the cold bath. The superacid (ca. 1 mL) was charged into a second NMR tube (quartz tube for HF·SbF₅) and was diluted with SO₂ or SO₂ClF (ca. 1 mL), flushed with argon, and capped. Vigorous vortex mixing of the cold superacid solution gave a clear homogeneous solution. The NMR tube containing the cold superacid was slowly poured into the cold substrate while shaking the NMR tube in dry ice/acetone bath. Vigorous vortex mixing followed, giving a clear yellow solution. A cold aliquot was quickly transferred under argon into a 5 mm NMR tube immersed in dry ice/acetone bath. Precooled CD₂Cl₂ (8–10 drops) was added (vortex). The cold NMR samples were examined within 1–2 h of preparation.

Multinuclear NMR (and Microanalysis) Data for the Phosphonium Cations. Phosphonium ion 6: ³¹P NMR (CDCl₃) δ 215.8 (s, 3P), 143.4 (s, 1P); ¹³C NMR (CDCl₃) δ (OTf) 119.4 (q, ¹J_{CF} = 317.5 Hz), (P⁺-CH₂-) 33.0 (dd, ¹J_{PC} = 14.4 Hz, ³J_{PC} = 1.6 Hz), (C₁-CMe₃) 31.6 (m), (C₂-CMe₃) 31.1 (dd, ⁴J_{PC} = 10.8 Hz, ²J_{PC} = 5.1 Hz), (C₁-CMe₃) 24.6 (m), (C₂-CMe₃) 21.4 (pseudoquartet, $J_{PC} = 5.7$ Hz), (C₁) 10.0 (m), (P⁺-CH₂CH₃) 7.9 (²J_{PC} = 5.4 Hz), (C₂) -25.6 (m); ¹H NMR (CDCl₃) δ (P⁺-CH₂) 4.11 (dq, ³J_{HH} = 8.4 Hz, ²J_{HP} = 10.1 Hz), (P⁺-CH₂-CH₃) 2.28 (dt, ³J_{HH} = 7.4 Hz, ³J_{HP} = 11.6 Hz), (tBu) 1.68 (s, 27H), (tBu) 1.56 (s, 9H). Anal. Calcd for C₂₃H₄₁P₄SO₃F₃: C, 47.75; H, 7.14. Found: C, 47.65; H, 7.30.

Phosphonium ion 7: ³¹P NMR (CDCl₃) δ 219.3 (d, ² J_{PP} = 4.3 Hz, 3P), 132.6 (q, ² J_{PP} = 4.3 Hz, 1P); ¹³C NMR (CDCl₃) δ

 $\begin{array}{l} (\mathrm{Ph}) \ 131.4 \ (\mathrm{d}, J_{\mathrm{PC}} = 5.3 \ \mathrm{Hz}), (\mathrm{Ph}) \ 130.0 \ (\mathrm{d}, J_{\mathrm{PC}} = 3.6 \ \mathrm{Hz}), (\mathrm{Ph}) \\ 129.6 \ (\mathrm{d}, J_{\mathrm{PC}} = 3.0 \ \mathrm{HZ}), (\mathrm{ipso-C}) \ 124.7 \ (\mathrm{d}, ^2 J_{\mathrm{PC}} = 10.6 \ \mathrm{Hz}), (\mathrm{CF}_3) \\ 119.6 \ (\mathrm{q}, \ ^1 J_{\mathrm{CF}} = 319 \ \mathrm{Hz}), (\mathrm{P}^+ - \mathrm{CH}_2 \mathrm{Ph}) \ 47.5 \ (\mathrm{d}, \ ^1 J_{\mathrm{PC}} = 33.0 \ \mathrm{Hz}), \\ (\mathrm{C}_1 \text{-} \mathrm{CMe}_3) \ 31.9 \ (\mathrm{m}), \ (\mathrm{C}_2 \text{-} \mathrm{CMe}_3) \ 31.1 \ (\mathrm{m}), \ (\mathrm{C}_1 \text{-} \mathrm{CMe}_3) \ 24.5 \ (\mathrm{m}), \\ (\mathrm{C}_2 \text{-} \mathrm{CMe}_3) \ 21.6 \ (\mathrm{pseudoquartet}, \ J_{\mathrm{PC}} = 5.5 \ \mathrm{Hz}), \ (\mathrm{C}_1) \ 13.1 \ (\mathrm{m}), \\ (\mathrm{C}_2) \ - 25.7 \ (\mathrm{m}); \ ^1 \mathrm{H} \ \mathrm{NMR} \ (\mathrm{CDCl}_3) \ \delta \ (\mathrm{Ph}) \ 7.55 - 7.40 \ (\mathrm{m}, \ 5\mathrm{H}), \\ (\mathrm{P}^+ \text{-} \mathrm{CH}_2 \mathrm{Ph}) \ 4.88 \ (\mathrm{d}, \ ^2 J_{\mathrm{PH}} = 10.0 \ \mathrm{Hz}, \ 2\mathrm{H}), \ (\mathrm{tBu}) \ 1.14 \ (\mathrm{s}, \ 27\mathrm{H}), \\ (\mathrm{tBu}) \ 1.05 \ (\mathrm{s}, \ 9\mathrm{H}). \ \mathrm{Anal}. \ \mathrm{Calcd} \ \mathrm{for} \ \mathrm{C}_{2\mathrm{s}} \mathrm{H}_{3} \mathrm{P}_4 \mathrm{SO}_3 \mathrm{F}_3: \ \mathrm{C}, \ 52.49; \\ \mathrm{H}, \ 6.76. \ \mathrm{Found}: \ \mathrm{C}, \ 52.44; \ \mathrm{H}, \ 7.0. \end{array}$

Phosphonium ion 8: ³¹P NMR (CDCl₃) δ 198.1 (d, ²J_{pp} = 17.1 Hz, 3P), 86.4 (q, ²J_{PP} = 17.1 Hz, 1P); ¹³C NMR (CDCl₃) δ (Ad-C₂) 47.7 (s), (Ad-C₁) 41.2 (d, ¹J_{PC} = 41.5 Hz), (Ad-C₄) 35.5 (s), (Ad-C₃) 31.6 (s), (C₁-CMe₃) 32.8 (m), (C₂-CMe₃) 32.0 (m), (C₁-CMe₃) 24.7 (d, ³J_{PC} = 11.1 Hz), (C₂-CMe₃) 21.1 (pseudo-quartet, $J_{PC} = 5.8$ Hz), (C₁) 12.6 (m), (C₂) -20.6 (m); ¹H NMR (Ada) 2.10 (br, s), (Ad) 1.64 (br, s), (tBu) 1.23 (s, 27H), (tBu) 1.08 (s, 9H). Anal. Calcd for C₃₀H₅₁P₄Cl₆Sb: C, 41.4; H, 5.90. Found: C, 39.3; H, 6.7.

Phosphonium ion 9: ³¹P NMR (CDCl₃) δ 194.5 (d, ²J_{PP} = 18.0 Hz; 3P), 84.2 (q, ²J_{PP} = 18.0 Hz; 1P); ¹³C NMR (CDCl₃) δ (CO) 191.3 (m), (C₁-CMe₂Et) 42.3(m), (C₂-CMe₂Et) 38.3 (m), (C₁-CMe₂CH₂CH₃) 36.0 (m), (C₂-CMe₂CH₂CH₃) 35.2 (m), (C₁-CMe₂Et) 30.0 (m), (C₂-CMe₂Et) 26.1 (m), (C₁-CMe₂CH₂CH₃) 20.9, (C₂-CMe₂CH₂CH₃) 16.8 (m), (C₁) 9.0 (m), (COMe) 8.3 (s) (C₂) -18.0 (m); ¹H NMR (CDCl₃) δ COMe 2.13 (s, 3H), (CH₂) 1.55 (s, 8H), (CH₃) 1.17 (5, 18H), (CH₃) 1.04 (s, 6H), (CH₂CH₃) 0.94 (t, 12H).

Phosphonium ion 11: ³¹P NMR (CDCl₃) δ (P⁺-Et) 85.6 (dt, $J_{PP} = 22.8$ and 9.4 Hz), (2P) 62.4 (pseudotriplet, $J_{PP} = 9.9$ Hz), (P⁺-COMe) 49.0 (dt, $J_{PP} = 22.8$ and 10.2 Hz); ¹³C NMR (CDCl₃) δ (CO) 182.3 (br, s), (CF₃) 119.1 (q, $J_{CF} = 318.5$ Hz), (C₁) 69.4 (m), (C₂) 47.1 (m), (C₁-CMe₃) 34.8 (m), (CMe₃) 33.1 (m), (CMe₃) 32.7 (m), (P⁺-CH₂) 29.7 (d, ¹ $J_{PC} = 23.3$ Hz), (C₁-CMe₃) 28.3 (m), (CMe₃) 26.2 (m), (CMe₃) 24.0 (m), (COMe) 20.6 (s), (C₃) 12.8 (m), (P⁺-CH₂CH₃) 8.4 (d, ² $J_{PC} = 12.8$ Hz); ¹H NMR (CDCl₃) δ (Et) 3.32 (m, 2H), (COMe) 2.27 (s, 3H), (Et) 1.74 (dt, ³ $J_{PH} = 23.7$ Hz, $J_{HH} = 6.7$ Hz), (C₁-CMe₃) 1.26 (s, 18H), (CMe₃) 1.17 (s, 9H), (CMe₃) 1.13 (s, 9H).

Phosphonium ion 13: ³¹P NMR (CDCl₃) δ 86.2 (dt, 1P, ²J_{PP} = 22.3 Hz, ²J_{PP} = 8.3 Hz), 61.9 (pseudotriplet, 2P, ²J_{PP} = 9.3 Hz), 49.0 (dt, 1P, ²J_{PP} = 22.3, ²J_{PP} = 10.4 Hz). **Phosphonium ion 14:** ³¹P NMR (FSO₃H·SbF₅/SO₂) δ 170.2

Phosphonium ion 14: ³¹P NMR (FSO₃H·SbF₆/SO₂) δ 170.2 (pseudotriplet, 2P, ²J_{PP} = 11.2 Hz), (P⁺-Et) 136.4 (dt, ²J_{PP} = 34.5 Hz, ²J_{PP} = 12.1 Hz), (P⁺-H) 81.2 (dt, ²J_{PP} = 34.5 Hz, ²J_{PP} = 10.8 Hz, ¹J_{PH} = 467 Hz); ¹³C NMR (FSO₃H·SbF₆/SO₂) δ (CF₃) 114.8 (q, J_{CF} = 276.5 Hz), (C₁) 39.9 (m), (C₁-CMe₃) 33.1 (m), (CMe₃) 32.5 (m), (CMe₃) 31.7 (m), (P⁺-CH₂CH₃) 31.6 (m), (C₁- CMe₃) 24.4 (s), (CMe₃) 23.2 (s), (CMe₃) 21.7 (s), (C₂) 16.1 (m), (C₃) 8.5 (dd, $J_{CP} = 26$ Hz and 39 Hz), (P⁺-CH₂CH₃) 7.6 (d, ${}^{2}J_{CP} = 6.8$ Hz); ¹H NMR (FSO₃H·SbF₅/SO₂) δ (P⁺-CH₂CH₃) 3.71 (br m), (P⁺-CH₂CH₃) 1.92 (dt), (tBu) 1.40 (s, 18H), (tBu) 1.31 (s, 9H), (tBu) 1.27 (s, 9H).

Phosphonium ion 15: ³¹P NMR (FSO₃H·SbF₅/SO₂ClF) δ 117.0 (dd, 2P, ²J_{PP} = 29.7 and 13.4 Hz), (P⁺-H) 114.8 (dt, ²J_{PP} = 29.6 and 13.2 Hz); (P⁺-Et) 79.5 (pseudoquartet, J_{PP} = 30.0 Hz); ¹³C NMR δ (C₁) 61.9 (m) (cage-C) 37.9 (m), (C₁-CMe₃) 36.5 (br,s), (P⁺-CH₂-CH₃) 34.5 (m), (CMe₃) 33.6 (br,s), (CMe₃) 33.4 (br, s), (CMe₃) 24.9 (s), (CMe₃) 24.2 (s), (CMe₃) 23.7 (s), (cage-C) 17.4 (m), (P⁺-CH₂CH₃) 8.35 (d, ²J_{CP} = 6.8 Hz).

Phosphonium ion 17: ³¹P NMR (FSO₃H·SbF₅/SO₂ClF) δ 117.2 (2P), 106.7 (1P), 80.3 (pseudoquartet, ²J_{PP} = 33 Hz); ¹³C NMR δ (C₁) 60.6 (m), (cage-C) 38.1 (m), (C₁-CMe₃) 36.1 (br, s), (CMe₃) 33.1 (m), (CMe₃) 34.2 (m), (CMe₃) 25.9 (s), (CMe₃) 23.7 (s), (CMe₃) 23.4 (s), (P⁺-Me) 21.4 (d, ¹J_{CP} = 17.6 Hz), (cage-C) 16.0 (m).

Phosphonium ion 18: ³¹P NMR (FSO₃H·SbF₅/SO₂) δ 26.4 (d, 3P, ²J_{PP} = 91.3 Hz), -33.7 (q, 1P, ²J_{PP} = 91.3 Hz); ¹³C NMR δ (cage-C) 120.7 (m), (cage-C) 59.9 (m), (CMe₂Et) 47.7 (m), (CMe₂CH₂CH₃) 35.8 (m), (CMe₂Et) 25.0 (s), (CMe₂CH₂CH₃) 8.2 (s); ¹H NMR (CMe₂CH₂CH₃) 1.87 (unresolved), (CMe₂CH₂CH₃) 1.45 (unresolved), (CMe₂CH₂CH₃) 1.07 (unresolved).

Phosphonium ion 19: ³¹P NMR (FSO₃H·SbF₅/SO₂) δ 63.2 (s, 2P), -38.9 (s, 1P); ¹³C NMR δ (C₁) 88.4 (m), (C₂) 47.7 (m), (C₂-CMe₃) 41.5 (s), (C₁-CMe₃) 37.6 (m), (C₁-CMe₃) 29.1 (br, s), (C₂-CMe₃) 26.7 (br, s); ¹H NMR δ (CMe₃) 1.60 (s, 9H), (CMe₃) 1.25 (s, 27H), (PSH) 5.6 (br, 1H).

Phosphonium ion 20: 31 P NMR (FSO₃H·SbF₃/SO₂) δ 68.2 (s, 2P), -33.0 (s, 2P).

Acknowledgment. We thank NATO for partial support and the Ohio Academic Challenge program for the purchasing funds for the GE-GN300 NMR instrument used for this investigation.

Supplementary Material Available: PM3 structures for **21** and its mono-, di-, tri-, and tetra-P-protonated cations with bond lengths and bond angles shown on the figures; ³¹P, ¹³C, and ¹H NMR spectra of **6**, **7**, and **11**; ³¹P and ¹H NMR spectra of **8** and **9b** (18 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO941112+